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The influence of rotation on the spectral energy transfer of homogeneous turbulence
is investigated in this paper. Given the fact that linear dynamics, e.g. the inertial
waves regime found in an RDT (rapid distortion theory) analysis, cannot affect
a homogeneous isotropic turbulent flow, the study of nonlinear dynamics is of
prime importance in the case of rotating flows. Previous theoretical (including both
weakly nonlinear and EDQNM theories), experimental and DNS (direct numerical
simulation) results are collected here and compared in order to give a self-consistent
picture of the nonlinear effects of rotation on turbulence.

The inhibition of the energy cascade, which is linked to a reduction of the dissipation
rate, is shown to be related to a damping of the energy transfer due to rotation. A
model for this effect is quantified by a model equation for the derivative-skewness
factor, which only involves a micro-Rossby number Roω = ω′/(2Ω) – ratio of r.m.s.
vorticity and background vorticity – as the relevant rotation parameter, in accordance
with DNS and EDQNM results.

In addition, anisotropy is shown also to develop through nonlinear interactions
modified by rotation, in an intermediate range of Rossby numbers (RoL < 1 and
Roω > 1), which is characterized by a macro-Rossby number RoL based on an integral
lengthscale L and the micro-Rossby number previously defined. This anisotropy is
mainly an angular drain of spectral energy which tends to concentrate energy in
the wave-plane normal to the rotation axis, which is exactly both the slow and the
two-dimensional manifold. In addition, a polarization of the energy distribution in
this slow two-dimensional manifold enhances horizontal (normal to the rotation axis)
velocity components, and underlies the anisotropic structure of the integral length-
scales. Finally a generalized EDQNM (eddy damped quasi-normal Markovian) model
is used to predict the underlying spectral transfer structure and all the subsequent
developments of classic anisotropy indicators in physical space. The results from the
model are compared to recent LES results and are shown to agree well. While the
EDQNM2 model was developed to simulate ‘strong’ turbulence, it is shown that it has
a strong formal analogy with recent weakly nonlinear approaches to wave turbulence.

1. Introduction
The dominance of mean rotation over mean strain can be found in many flows of

practical interest. It can be shown that conventional one-point closure models cannot
predict the effects of rotation on the turbulence statistics. In addition, many recent
studies have shown that mean rotation is an important factor in certain mechanisms
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of flow instability. The study of rotating flows is therefore interesting from the point
of view of both topological flow structure and turbulence modelling in fields as diverse
as engineering (e.g. turbomachinery, reciprocating engines with swirl and tumble),
geophysics and astrophysics.

The simplest flow where the effects of rotation on turbulence can be isolated is the
case of initially unstructured turbulence (isotropic) subjected to rotation. While the
Coriolis force has been introduced in theoretical and numerical approaches from the
initial time, we consider initially isotropic turbulence in an already spun-up fluid, such
as grid turbulence in a rotating tank – see the experiment by Hopfinger, Browand &
Gagne (1982). This flow has been extensively investigated theoretically, including both
linear (Greenspan 1968), and weakly nonlinear theories of resonant waves (Waleffe
1991, 1993, hereafter referred to as Waleffe). Linear RDT (rapid distortion theory) and
nonlinear EDQNM (eddy damped quasi-normal Markovian) models were developed
to study these flows. These models can be shown to have a close connection with
the theoretical (weak turbulence) analyses but were developed to simulate developed
turbulence (Itsweire, Chabert & Gence 1979; Cambon & Jacquin 1989; Mansour,
Cambon & Speziale 1991a, b; Mansour, Shih & Reynolds 1991c). The same class of
flows was also investigated experimentally by Wigeland & Nagib (1978), Jacquin et al.
(1990) and Veeravalli (1991), and simulated using DNS (direct numerical simulations)
and LES (large-eddy simulations) methodologies by various groups (Bardina, Ferziger
& Rogallo 1985; Dang & Roy 1985; Speziale, Mansour & Rogallo 1987; Mansour
et al. 1991a, b; Bartello, Métais & Lesieur 1994). Of course, the previous list of
references is not comprehensive, but a brief survey of existing literature is easier
if it is restricted to homogeneous flows (the experiment by Hopfinger et al. 1982
cannot be therefore included). In what follows, emphasis is placed on fundamental
effects of background rotation, on flows without mean gradients (shear, deformation,
temperature gradient), walls, stirring forces or pre-existing organized eddies.

The studies of Jacquin, Leuchter & Geoffroy (1989), Jacquin et al. (1990) and
Mansour et al. (1991b), have suggested a new insight into the problem of transition
from three-dimensional to two-dimensional structure caused by pure Coriolis effects,
a problem which is often avoided by invoking the classic Proudman–Taylor theorem.
The main finding is that the departure from isotropy (under rotation), which is linked
to the first phase of the transition process, is mediated by nonlinear interactions
and, therefore, only occurs at intermediate Rossby numbers for sufficiently high
Reynolds numbers. If the rotation is too weak, so that a macro-Rossby number
RoL = u′/(2ΩL) is larger than 1, the rotation cannot affect the dynamics of three-
dimensional isotropic freely decaying turbulence. If the rotation is too strong, so
that a micro-Rossby number Roλ = u′/(2Ωλ) ∝ Roω = ω′/2Ω is smaller than 1, the
nonlinear terms are completely damped through scrambling effects of inertial waves,
so that a pure viscous decay is obtained and no transition can develop. Here u′ and ω′

are r.m.s. velocity and vorticity fluctuations, whereas L and λ denote a typical integral
lengthscale and a typical Taylor microscale, respectively. At the intermediate range
(RoL < 1 and Roλ > 1), the width of which depends on the Reynolds number through
the ratio L/λ (so that Roω ∼ RoLRe1/2), anisotropy develops in agreement with the
beginning of the transition to two-dimensional. This anisotropy is first detected by the
departure of the integral lengthscales in several directions from their isotropic values.

The role of the Reynolds number is clear in recent 1283 and 2563 DNS by Mansour
et al. (1991), but these DNS runs are limited to only moderate Reynolds numbers,
since they started at the end of an isotropic precomputation without rotation. In order
to reach higher values, and to obtain stronger anisotropic effects due to nonlinear
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interactions modified by rotation, new high-resolution (128 × 128 × 512) LES runs
were carried out for homogeneous rotating turbulence (Cambon, Mansour & Squires
1994, hereafter referred to as CMS). These computations used the same numerical
procedure as Squires et al. (1993, 1994) with a Kraichnan-type subgrid-scale model
including a Rossby number correction. The CMS results confirmed the anisotropic
features of previous experimental, theoretical and DNS results in the intermediate
range of Rossby numbers. These results were carefully analysed to ensure that the
developed anisotropy was not due to boundary condition effects or other numerical
artifacts. Consequently these databases will be used, rather than DNS results at low
Reynolds number, in order to illustrate in a quantitative way the development of
anisotropy indicators at high Reynolds number, and perform detailed comparisons
with the ‘EDQNM2’ model of Cambon & Jacquin (1989). It is important to point
out that the second threshold Roω ∼ 1 characterized a reorganization rather than
a ‘freezing’ of the anisotropy in CMS, but the behaviour for the largest elapsed
times corresponding to Roω < 1 will not be discussed in the present paper, nor the
quasi-asymptotic power laws addressed by Squires et al. (1993, 1994). For the same
reason, the low-resolution (643) LES results by Bartello et al. (1994) will not be taken
into account, since they involve even larger elapsed times, so that Roω � 1, with only
a very few time-plots in the intermediate range of Rossby number, as far as we can
tell from their paper. In order to avoid confusion, it is also worth noting that the
Rossby number Ro, with no additional specification, is the macro-Rossby number in
all the works quoted above, or Ro = ε/(2Ωk) ∼ RoL, except in the paper of Bartello
et al. (1994) in which Ro = Roω .

In addition to the range of parameters, it is important to discuss the way in which
the initial three-dimensional isotropy is broken by nonlinear interactions modified by
rotation, and how the anisotropic spectral shape is reflected by the classical anisotropy
indicators in physical space, following the complete anisotropic description introduced
by Cambon & Jacquin (1989) and used in CMS. As in other domains of geophysics,
including quasi-geostrophic turbulence where rotation and stable stratification are
simultaneously present, the long-time history can be considered as a transition towards
the slow manifold. In the case of pure rotation, the slow manifold corresponds to two-
dimensional modes (for which the dependency on the longitudinal – onto the rotation
axis – space coordinate vanishes) or to the wave-plane normal to the rotation axis,
in Fourier space. The rapidity of the transition may depend on the initial ‘statistical
measure’ of this slow manifold. For instance, this measure is zero in the isotropic
case (where tridimensionality is maximum from a statistical point of view), and the
transition may involve very long times, unreachable by current experiments or DNS.
On the other hand, this transition can be dramatically accelerated if significant two-
dimensional contributions to the velocity field are initially present, as some germs
of two-dimensionality. The effect of initially two-dimensional modes on the low-
wavenumber range was extensively investigated by Dang & Roy (1985), and Teissèdre
& Dang (1987) using DNS. Their results on stabilization of two-dimensional eddies
can be interpreted as showing only that rotation inhibits the energy cascade, so that
the two-dimensional – large-scale – contribution is more and more dominant since
the three-dimensional – small scale – contribution is dissipated. This dissipation is
due to the fact that the energy drain from larger scales is cut by rotation. A similar
problem was also addressed by Bartello et al. (1994) using LES. They argued that
because of the presence of an inverse energy cascade, the energy cascade is no longer
inhibited but enhanced. Our qualitative argument is as follows: the inverse energy
cascade is generated by the resonant triads for very small Ro. However, when Ro
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is not too small, these triads are diluted in the non-resonant ones, which themselves
reduce the energy transfer, whereby they damp almost all possibility of an inverse
cascade occurring. Ultimately, the reduction of the energy cascade by rotation is
attributed to a reduction of energy transfer, due to the scrambling of non-resonant
triads in the triple correlations of the fluctuating velocity. In physical space, we will
show that the damping of the skewness is a by-product of this effect.

In this paper we shall survey previous works, which are summarized, and we shall
demonstrate that the reported results are self-consistent, and present new quantitative
results useful for the subsequent statistical modelling of actual rotating flows.

Section 2 is devoted to basic equations and what can be understood from pure
linear or weakly nonlinear theoretical approaches, from a pure dynamical point of
view. For convenience the EDQNM models, and especially the most sophisticated
version ‘EDQNM2’, are introduced in this section in order to underline the important
common background that they share with the theories of wave turbulence.

The corpus of agreed statements about the statistics of rotating homogeneous
turbulence is presented in §3, including both numerical and experimental results.
Energy cascade is studied using isotropically accumulated quantities, with application
to K–ε modelling.

Section 4 is devoted to a detailed analysis of anisotropic features. The analysis is
based on a stringent relationship between the anisotropy indicators in physical space
(single-point correlations) and the underlying spectral structure. The development of
several anisotropy indicators obtained from the recent CMS database are compared
with that calculated using the EDQNM2. A recap of results and open problems is
given in §5.

2. Basic equations and approach to wave turbulence
In the absence of mean gradients and external forces, the starting point of the

dynamical study is the Navier–Stokes equation in a rotating frame of reference

ui,t + 2εijlΩjul − ν∇2ui + (pr/ρ),i = −(ps/ρ),i − ujui,j (2.1)

where ui(x, t) is the velocity field, pr and ps are the rapid and the slow pressure
fields associated with the linear and nonlinear terms respectively, εijl the third-order
alternating tensor, Ωi the angular velocity of the rotating frame, and ν the kinematic
viscosity. For convenience, the nonlinear terms are placed on the right-hand side of
the equation. The fluid is considered to be incompressible, so that the velocity field
is solenoidal (divergence free) ui,i = 0, the density ρ is constant, and the pressure is
governed by a Poisson equation that includes both a linear term with respect to ui
(pr) – the divergence of the Coriolis force, and a nonlinear one (ps) – the divergence
of the convective term. The pressure can be removed from consideration by taking
the curl of equation (2.1). This operation yields the following vorticity equation:

ωi,t − 2Ωjui,j + ν∇2ωi = −ujωi,j + ui,jωj (2.2)

where the ‘vortex-stretching’ term ui,j(2Ωj +ωj), which involves the absolute vorticity
2Ωj + ωj , is split in order to collect the nonlinear terms on the right-hand side. To
close the vorticity equation, in terms of ωi, the velocity is obtained by solving the
equation

∇2ui = −εijlωl,j .
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In both cases (equations (2.1) and (2.2)) the solution to a Poisson equation is needed
even after splitting the equations in terms of linear and nonlinear effects and solving
the linearized equations. This requirement, and the fact that at small Rossby numbers
plane waves of the form exp(i(kjxj ± σt)) are solutions to the linearized equations,
motivate the decomposition of the flow field into Fourier modes, as will be apparent
in what follows.

Investigations of both linear and – even weakly – nonlinear terms were carried out
to explain the first phase of the transition from a three-dimensional state to a two-
dimensional one. The classic argument used to explain such a bidimensionalization,
known as the Proudman theorem (Proudman 1916; Taylor 1921), is based on the
fact that both the nonlinear and the viscous terms in (2.2) can be neglected given
a very small Rossby number and a very high Reynolds number. However, this
level of approximation yields a pure linear inviscid regime where energy, helicity and
enstrophy spectra are conserved. In this case, any transition to a two-dimensional
state is excluded. In order to include the two-dimensional condition (Ωjui,j = 0; no
spatial derivative along the direction of the external angular velocity vector), the
time derivative, in the linearized inviscid equations, is neglected given a long-time
assumption. It is important to point out that the scaling of the vorticity time derivative
is an assumption, and it cannot be related a priori to the true nonlinear dynamics,
which is removed from consideration in the strict zero Rossby number limit. In the
absence of geometrical constraints (walls, thin layer), this scaling is justified only if an
external timescale is present (for instance pushing a ball slowly in the Taylor rotating
tank); even if a rescaling of the time can take into account the nonlinear dynamics in
other cases, such as in spherically compressed flows (see Zimont & Sabel’nikov 1975;
Cambon, Mao & Jeandel 1992b), there is no such simple and stringent argument in
rotating flows. In other words, the Proudman theorem strictly shows that the ‘slow
manifold’ (limit of vanishing ωi,t) is the two-dimensional manifold, but it does not
prove transition toward the two-dimensional state, which is a nonlinear phenomenon.
Hence an explicit investigation of nonlinear terms is required for the purpose of
studying the transition towards the slow – or two-dimensional – manifold.

2.1. The equations of motion in wave space

Solutions of the linearized equations (2.1) or (2.2) are found in Fourier space in terms
of the Fourier components, ûi or ω̂i defined as follows:

ûi(k, t) =
1

(2π)3

∫
ui(x, t) exp(−ix · k) d3x,

ω̂i(k, t) =
1

(2π)3

∫
ωi(x, t) exp(−ix · k) d3x.

Starting from the linearized equation in spectral space, in which the pressure is
eliminated, it is possible to define an orthonormal basis of the linear operator
eigenmodes for û or ω̂:

Ni(εk) = e2
i (k)− iεe1

i (k) , ε = +1,−1 , i2 = −1 (2.3)

where e1, e2 form a direct orthonormal frame in the plane normal to the wavevector k,
the so-called Craya–Herring frame (Craya 1958; Herring 1974). The two – complex
conjugate – eigenmodes Ni(k) and N∗i (k) = Ni(−k) are defined as in Cambon &
Jacquin (1989) who emphasized their orthonormal properties (conservation of frame-
invariants and of the form of realizability constraints for covariances matrices in the
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eigenframe) but the definitions by Greenspan (1968) or Waleffe are almost the same.
In addition to being the eigenmodes of the linear regime for strong rotation, these
are also the eigenmodes of the curl operator, i.e. εijliklNj(k) = Ni(k), and are of
interest even without rotation. Following Waleffe, they will be referred to as helical
modes hereafter, and the sign ε (sk in Waleffe) will be referred to as the polarity. Then
the divergence-free velocity field in Fourier space is projected on the basis of helical
modes:

ûi = ξ−1Ni(−k) + ξ+1Ni(k) (2.4)

or

ξε(k, t) = 1
2
ûi(k, t)Ni(−εk) , ε = +1,−1, (2.5)

and the basic equation (2.1) is rewritten in terms of the helical mode intensities,
considering both linear and nonlinear terms, so that[

∂

∂t
− iε

2Ωjkj
k

+ νk2

]
ξε(k, t) =

∑
ε′ε′′

∫
k+p+q=0

Mεε′ε”(k, p, q)ξ∗ε′(p, t)ξ
∗
ε′′(q, t) d3p (2.6)

(see Cambon & Jacquin 1989). In this equation, which is completely general, the –
linear – left-hand-side term is diagonal, since the helical modes are eigenmodes of
the linear regime, and the – nonlinear – term conserves the form of a triadic integral
(as for the Fourier transform of the basic convective term ûjui,j) but involves a new
‘influence matrix’, a symmetrized form in p and q, which reads

Mεε′ε′′ = − 1
4
i kl
[
Nl(ε

′p)Ni(εk)Ni(ε
′′q) +Nl(ε

′′q)Ni(εk)Ni(ε
′p)
]
. (2.7)

A slightly different form can be found starting from ω× u (Waleffe), instead of u · ∇u,
for the nonlinear term in (2.1):

Mεε′ε′′ = 1
4
iN (εk) ·

[(
p ×N (ε′p)

)
×N (ε′′q) +

(
q ×N (ε′′q)

)
×N (ε′p)

]
. (2.8)

Of course, equation (2.6) can be derived from the vorticity equation (2.2), in agreement
with

ω̂i = k [ξ+1Ni(k)− ξ−1Ni(−k)] .

If the nonlinear and viscous terms are ignored in (2.6), the simple exponential
solutions exhibit the dispersion law of the inertial waves σ = 2Ωjkj/k = 2Ωk3/k (with
Ωi = Ωδi3 from now on, without loss of generality). The time dependence vanishes
only for k3 = 0, so that the wave-plane k3 = 0 can be referred to as the slow manifold,
according to classic works in geophysics (Lorenz 1980; Hasselman 1962). The slow
manifold coincides with the geostrophic mode in the case of pure rotation, so that
a tendency towards bidimensionalization (which cannot be demonstrated in the pure
linear regime) would be a concentration towards the ‘slow manifold’. Such a tendency
can be studied at low Rossby number using the following new – and final – change
of variables

ξε(k, t) = aε(k, T ) exp(2iεΩtk3/k − νk2t) ,

ξε′(p, t) = aε′(p, T ) exp(2iε′Ωtp3/p− νp2t) ,

ξε′′(q, t) = aε′′(q, T ) exp(2iε′′Ωtq3/q − νq2t) .

 (2.9)

The equations of motion in terms of aε are then given as

∂

∂t
aε(k, T ) =

∑
ε′ε′′

∫
k+p+q=0

Mεε′ε”(k, p, q)a∗ε′(p, t)a
∗
ε′′(q, t)

× exp
[
−2iΩt(εk3/k + ε′p3/p+ ε′′q3/q)

]
exp

[
−ν(q2 + p2 − k2)t

]
d3p. (2.10)
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This last equation is almost the same as (2.6), but it no longer contains the linear
‘Coriolis’ term on the left-hand side and the influence matrix on the right-hand side
is weighted by the following ‘triadic’ wave factor:

exp
[
2iΩt(εk3/k + ε′p3/p+ ε′′q3/q)

]
. (2.11)

Equations (2.9) and (2.10) are valid in terms of the single time (t = T in aε). Thus the
introduction of a slow timescale T = Ro× t with Ro a small formal parameter similar
to a Rossby number allows further investigation as follows. Non-resonant triads lead
to a rapid scrambling of nonlinearity for large Ωt. Hence, since the non-resonant
triads average out over the long timescale, it can be shown (Benney & Saffman
1966; Waleffe) that at the lowest order of the Rossby number, the slow dynamics is
governed only by resonant triads

εk3/k + ε′p3/p+ ε′′q3/q = 0 (2.12)

such that the wave factor (2.11) is 1 in (2.10). In this case, the rotation Ω drops out
of the equations governing the evolution of aε, and the interactions are the same as
in the non-rotating case. This implies that the slow time T scales with the turbulence
time, and not the rotation.

The dynamics of the energy and the helicity at a given wavenumber,

e = 1
2
û∗i ûi = ξ∗+1ξ+1 + ξ∗−1ξ−1 = a∗+1a+1 + a∗−1a−1, (2.13)

h = 1
2
û∗i ω̂i = k(a∗+1a+1 − a∗−1a−1), (2.14)

can be derived from the exact equation (2.6). In the presence of strong rotation
these equations are almost the same as without rotation, but the triads involved in
the nonlinear terms are restricted to resonant triads. A priori, the low Rossby number
limit does not yield separation of the rapid inertial wavy modes from the slow two-
dimensional modes (both are slow in terms of their energy), but yields a separation
between the resonant triads which drive the slow dynamics and the non-resonant
triads for which the nonlinear dynamics are damped. In order to predict a transition
towards a two-dimensional state on a slow timescale, it is necessary

(a) to show that the resonant triads do tend to concentrate the spectral energy
density towards the two-dimensional wave-plane k3 = 0 (the slow manifold);

(b) then, to give a statistical meaning to ‘slow’ time and ‘low’ Rossby number:
since the measure of the manifold of almost resonant triads (given a broadening
of the resonant condition (εk3/k + ε′p3/p + ε′′q3/q) = O(Ro)) is very small at very
small Rossby number, the related spectral transfer terms may not be high enough for
the transition to be triggered in a physically reachable elapsed time. This problem
is particularly relevant when starting with a three-dimensional isotropic state where
the measure of the two-dimensional slow manifold is zero. If the state is closer to a
two-dimensional one, a two-dimensional dynamics with inverse cascade can accelerate
the transition.

Note that these issues about transition to a two-dimensional state are very different
(despite apparent analogies) from quasi-geostrophic flows where stable stratification
is present, since the slow manifold (vortex and not wavy modes) has an important
measure even in three-dimensional isotropic turbulence, and in MHD flows at low
magnetic Reynolds number, where the transition can be predicted in the pure linear
limit, through a non-isotropic linear Joule dissipation term (Cambon & Godeferd
1993; Godeferd & Cambon 1994).
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2.2. Two-point correlations

The equations governing the evolution of the two-point correlations are needed to
quantify the effects of rotation on the turbulence statistics. These can be derived by
first expressing the second-order spectral tensor (covariance matrix of ûi) in terms of
new variables (Cambon & Jacquin 1989),

Ûij(k, t) = e(k, t)Pij(k) + Re
[
Z(k, t)Ni(k)Nj(k)

]
+ iεijl

kl

k

h(k, t)

k
, (2.15)

where Pij = δij − kikj/k2, also equal to the symmetric part of NiN
∗
j , is the classic

solenoidal projector. The cross-term Z = 2ξ∗−1ξ+1, represents a polarization anisotropy.
The above equation is valid for any anisotropic configuration; it generalizes and/or
simplifies previous formalisms by Batchelor (1953) and Craya (1958) for homogeneous
incompressible turbulence.

It is clear from (2.15) that we need only the three terms e, Z and h (e, |Z | and h are

the invariants) of the spectral tensor Ûij to describe all of the quadratic correlations.
The starting point of analyses by both Cambon & Jacquin (1989) and Waleffe (1991)
is the following exact system of equations for the invariants in terms of the helical
modes intensities: [

∂

∂t
+ 2νk2

]
e = Te,[

∂

∂t
+ 2νk2 + 4iΩ

k3

k

]
Z = Tz,[

∂

∂t
+ 2νk2

]
h = Th,


(2.16)

in addition to the set of terms in (2.13), (2.14). Cubic terms Te and Th were
investigated by Waleffe (1991) before using any statistical averaging and any closure,
whereas the EDQNM2 model by Cambon & Jacquin concerned Te and Tz . It is
worth noting that the complete set e, Z, h is needed for expressing the velocity or
vorticity covariances matrices related to any homogeneous anisotropic flow. The
helicity is needed for flows with initial helicity.

The previous discussions were for the general case of homogeneous flows. In what
follows, we shall concern ourselves with the statistics of the flow. To simplify the
notation, we shall use e, Z, h, T e, T z, T h to refer to statistically averaged quantities,
for instance 1

2
〈û∗i (p, t)ûi(k, t)〉 = e(k, t)δ(k − p) instead of e = 1

2
û∗i ûi. From the defini-

tions (2.13), (2.14) with or without statistical averaging, a non-dimensional helicity
ratio, always smaller than 1, can be defined as h/(ke), whereas the non-dimensional
correlation coefficient between ξ+1 and ξ−1 is

C(ξ+1, ξ−1) =
〈ξ∗−1ξ+1〉

(〈ξ∗+1ξ+1〉〈ξ∗−1ξ−1〉)1/2
=

Z

(e2 − (h/k)2)1/2
. (2.17)

The above complex ratio, whose modulus is an invariant smaller than or equal to 1,
characterizes a polarization anisotropy and plays an essential role in any configuration
of homogeneous anisotropic turbulence, and especially in the case of pure rotation.

The EDQNM2 model of Cambon & Jacquin (1989) for Te and Tz dealt with
both items (a) and (b) mentioned in §2.1. This model which is summarized in the
next section and the Appendix, could be derived from a classic EDQNM model
for triple correlations in terms of aε starting from the exact equations (2.10); it
allowed interpolation from the wave turbulence at low Rossby number, because of its
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consistency with the resonant condition, to high Rossby number turbulence, where
it meets the conventional EDQNM model (Orszag 1970; André & Lesieur 1978).
The model was numerically solved as a ‘black box’ but the simpler and more elegant
arguments given by Waleffe for item (a) using his ‘triad instability principle’ will be
summarized in §2.4.

2.3. EDQNM models

The EDQNM-type models can be introduced and constructed using different ap-
proaches (two-point closures for triple correlations, stochastic models) and they are
often developed and applied only in the case of isotropic and ‘strong’ turbulence. The
EDQNM procedure yields a closure for third-order velocity correlations at two points
(those involved in the transfer terms on the right-hand sides of (2.16)) in terms of
second-order velocity correlations at two points (the e, Z, h set in the general case). In
this sense, EDQNM is a triple-order two-point closure model, where the ‘two-point’
aspect is addressed using spectral space for mathematical convenience. Accordingly,
the specific closure problem coming from the expression of pressure–velocity gradient
or dissipation terms in second-order single-point closure models, due to non-local
operators, is avoided. The only closure problem comes from the generalized transfer
terms (Te,Tz ,Th) which reflect the nonlinearity, so that the system of equations (2.16)
reproduces RDT for vanishing right-hand sides. The mathematical structure of these
‘two-point closure models’ comes from the expression of fourth-order correlations,
which are involved in the rate equations for triple correlations, in terms of products
of double correlations as for a normal law (quasi-normal approximation). Doing that,
the role of fourth-order cumulants is formally ignored, and it is restored through the
addition of a linear relaxation of triple correlations by means of an ‘eddy damping’
term. Finally the Markovian assumption amounts to truncating the self-memory of
triple correlations, in order to find a simpler and more reliable instantaneous – but
non-local – closure relationship of triple in terms of double correlations. It is impor-
tant to point out that the mathematical structure is given by the ‘QNM’ part of the
theory, whereas only a scalar eddy-damping coefficient needs an ad hoc adjustment.

In what follows we shall review two versions of the EDQNM model, which will be
compared to results from DNS or LES data. In the simpler one (Cambon, Bertoglio &
Jeandel 1981), called EDQNM hereafter, the structure of a basic model for isotropic
turbulence (see Orszag 1970) is conserved and the effect of rotation is taken into
account in the eddy-damping coefficient (André & Lesieur 1978) only by replacing

the enstrophy of the largest eddies 〈ω2〉<k = 2
∫ k

0
p2E(p, t)dp by the absolute enstrophy

of the largest eddies 〈ω2〉<k + 4Ω2, so that the eddy-damping term η present in the
characteristic time θkpq of triple correlations is

ηΩ(k, t) = νk2 + 1
2
A(〈ω2〉<k + 4Ω2)1/2,

〈ω2〉<k = 2

∫ k

0

p2E(p, t)dp, θkpq =
1

ηΩ(k, t) + ηΩ(p, t) + ηΩ(q, t)
.

 (2.18)

This correction was proposed on the grounds of a literal interpretation of the eddy-
damping coefficient based on 〈ω2〉<k as the ‘turn-over time’ of the largest eddies.
The value of the unique constant A = 0.366 is kept the same as in the isotropic
non-rotating case. The isotropic structure implies e = E(k, t)/(4πk2), Z = h = 0,
Te = T (k, t)/4πk2, Tz = Th = 0, so that the classic, i.e. isotropically accumulated by
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integration of Te over the angular dependent variables, energy transfer is given by

T (k, t) =

∫
∆k

θkpq(t)S
QN(k, p, q, t)dpdq (2.19)

where the superscript QN is for a quasi-normal expression, denoted SQN , which is
proportional to E(q, t)[k2E(p, t)− p2E(k, t)]. The detailed form of SQN , and T (k, t), is
cumbersome, and is presented in the Appendix for completeness.

The more advanced version, called EDQNM2 (Cambon 1982; Cambon & Jacquin
1989) reflects more accurately the wave dynamics and is capable of taking into
account the anisotropic features. We find that only the EDQNM2 model for closing
the spectral transfer terms Te and TZ was capable of predicting all the anisotropic
features observed in the DNS and LES results and it provides a synoptic scheme
to interpret and reconcile the various and apparently contradictory trends shown
by results from experiment and DNS. In addition to their symbolic abridged form
(Cambon & Jacquin 1989), the detailed equations have only been written in internal
reports and in Jacquin’s thesis, with some remaining typographical errors, so that
they are rewritten in the Appendix, where the interested reader could find a lot of
analogies with the formalism developed and published by Waleffe. Starting from the
exact equations (2.6) and (2.8), it is possible to write the rate equation for triple
correlation terms 〈aε(k, t)aε′(p, t)aε′′(q, t)〉 and to close it by the conventional eddy-
damped quasi-normal technique. In doing so, the model equations for the generalized
transfer terms Te, T z in (2.16) involve sums of eight contributions (according to
polarities of triads, as also shown by Waleffe), and these contribution are weighted
by the rotation-dependent factor in (2.11),

Te =
∑

ε,ε′ ,ε′′=−1,+1

∫
k+p+q=0

Se(QN)(εk, ε′p, ε′′q, t)

θ−1
kpq + 2iΩ(εk3/k + ε′p3/p+ ε′′q3/q)

d3p (2.20)

with a similar equation for Tz . The numerator of the integrand takes into account
the quasi-normal expansion for non-isotropic turbulence and is closed in terms of e
and Z , whereas the denominator involves viscous and eddy-damping effects through
θkpq , and explicit ‘linear’ rotation effects on triple correlation through the phase of the
term in (2.11). In effect, the classic timescale θkpq in the isotropic non-rotating case is
replaced by the following triadic complex timescales:

θεε
′ε′′

kpq =
θkpq

1 + 2iθkpqΩ(εk3/k + ε′p3/p+ ε′′q3/q)
. (2.21)

The above expression is consistent with ‘wave turbulence’ results which show no
explicit rotation effects for the resonance condition. In addition, the quasi-normal
assumption is supported at low Rossby number by the ‘wave-turbulence’ analysis
of Benney & Saffman (1966). The possible broadening of the resonance condition
depends on the order of magnitude of the ‘triadic Rossby number’ 1/(2θkpqΩ) in
(2.21). Only the choice of the ad hoc damping coefficient makes reference to ‘strong’
developed turbulence, and allows a matching with the behaviour at high Rossby
number. Of course the EDQNM model corrected for rotation, using (2.18) and
(2.19), can be seen as a simplified model for T , that is the spherically accumulated
contribution of Te. It is hoped that these model equations, and not only the use of
the related numerical code as a black box, will help to investigate the role of the
‘polarization transfer’ Tz in the two-dimensional manifold k3 = 0, a role which cannot
be elucidated from the more recent analyses by Waleffe or Squires et al. (1994), but
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is the key for understanding the most striking anisotropic feature, i.e. the de-coupling
of the two integral lengthscales with vertical separation. These equations are solved
using the simplifications for a semi-axisymmetric configuration without helicity, which
is the simplest anisotropic statistical configuration consistent with the basic equations,
and is created starting from a pure three-dimensional isotropic case.

2.4. Simplified triad interactions

The principle of triad instability was stated by Waleffe in the non-rotating case
(ξε = aε), looking at a single triad in terms of the helical modes in (2.6) or (2.10), so
that

aε(k, t),t = (ε′p− ε′′q)Ka∗ε′(p, t)a
∗
ε′′(q, t),

aε′(p, t),t = (ε′′q − εk)Ka∗ε′′(q, t)a∗ε(k, t),
aε′′(q, t),t = (εk − ε′p)Ka∗ε(k, t)a∗ε′(p, t).

 (2.22)

Starting from (2.8), the factor K is expressed as

K = − 1
4

(
N ∗(εk)×N ∗(ε′p)

)
·N (ε′′q)

= ei(ελ+ε′λ′+ε′′λ′′) εε
′ε′′

8kpq
(2k2p2 + 2p2q2 + 2q2k2 − k4 − p4 − q4)1/2 . (2.23)

The main advantage of the decomposition in terms of helical modes is that the
‘influence matrix’ in (2.7) or (2.8) is the product of a very simple term, including
only the moduli of the triad vectors, and a factor completely symmetric in terms of
εk, ε′p, ε′′q namely exp(i(ελ+ ε′λ′ + ε′′λ′′)) above, which concentrates all the angular
dependency (see also Cambon & Jacquin 1989 and the Appendix). The above system
(2.22) has a strong analogy with the stability of the rotating motion of a solid body
around the three principal axes of the inertial ellipsoid, with the lengths of the sides of
the triangle (k, p, q) playing the role of principal inertia coefficients. Assuming that the
most unstable mode (in the sense of the classic stability analysis of the above system)
transfers energy to the two others, the direction of energy transfers is predicted for
any geometry (the orientation need not be prescribed) of a triad of helical modes,
at given polarities ε, ε′,ε′′. The direction of the transfer depends on the sign of the
coefficients in the above three equations (2.22), and thus can be related to the values
of the polarity indices if an ordering, e.g. k > p > q, is assumed. A similar argument
can be found in Pedlosky (1986). In the presence of strong rotation, the principle of
triad instability is unchanged, but the analysis is restricted to resonant triads only,
i.e. for ε cos θk + ε′ cos θp + ε′′ cos θq = 0. In this case, the geometrical factors relating
the orientations of k, p and q, given by their cosines cos θk = k3/k, cos θp = p3/p and
cos θq = q3/q, have been shown by Waleffe to be such that the transfer of energy
always goes from a less slanted leg of the triad (with respect to the rotation vector) to
a more slanted one, when the instability principle holds, according to the equations

cos θk
(ε′q − ε′′p) =

cos θp
(ε′′k − εq)

=
cos θq

(εp− ε′k) ;

whence a drain of energy towards the direction orthogonal to Ω. Waleffe, however,
points out that the rate of energy transfer vanishes exactly when the wavevector k
reaches the equatorial orientation.

In the presence of strong rotation, it is sufficient to restrict the analysis to resonant
triads, to show that the simultaneous conditions given by the ‘triad instability principle’
on the geometry and the resonance condition predict an angular transfer towards
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the waveplane normal to the rotation axis. Hence the analysis of wave turbulence
at low Rossby number directly shows that the spectral density of energy tends to
concentrate in the slow manifold k3 = 0. Nevertheless, Waleffe’s analysis cannot
provide quantitative measures of the effects of rotation on the turbulence statistics.
In addition, the analysis does not give access to the polarization anisotropy (2.17),
which is a key parameter when looking at the detailed anisotropic features observed
in both Reynolds stresses and the integral lengthscales.

3. The effects of rotation on the turbulence statistics
There exists in the literature a wide consensus that rotation inhibits direct energy

cascade in three-dimensional turbulence, so that the dissipation rate is reduced.
Looking at the spherically averaged energy spectrum E(k, t) (integral of e over
spherical shells), rotation can affect only the spectral transfer term T (k, t) since the
classic Lin equation for the energy spectrum is not explicitly modified by the Coriolis
force:

∂E(k, t)

∂t
= T (k, t)− 2νk2E(k, t). (3.1)

Integration over k of the above equation gives (q2/2),t = −ε since T has zero integral,
but integration after multiplication by 2νk2 shows that T – modified by rotation –
can affect the dynamics of the dissipation rate ε = ν〈ωiωi〉:

ε,t = 2ν〈ωiωjui,j〉 − 2ν2〈ωi,jωi,j〉. (3.2)

The first term on the right-hand side represents turbulent stretching of vorticity and
is a production term. It relates to the nonlinear spectral transfer term through

〈ωiωjui,j〉 =

∫ ∞
0

k2T (k, t) dk. (3.3)

The second term represents a destruction of ε by viscous linear effects, or 2ν2〈ωi,jωi,j〉=∫ ∞
0

(2νk2)2E(k, t)dk. Rotation could play an explicit role only in the ‘enstrophy-
production term’, thus breaking the balance between production and destruction
often assumed in simple q2–ε models. Under suitable non-dimensionalization, the
enstrophy-production term involves the velocity derivative skewness

S =
6
√

15

7
ν〈ωiωjui,j〉

(q2/2)

ε2
1

Re1/2
. (3.4)

The above expression reduces to −〈u3
1,1〉/〈u2

1,1〉3/2 in isotropic turbulence. Re =

(q2/2)2/νε is a Reynolds number, which can be considered as the macro-Reynolds
number, assuming L ∼ q3/ε. In the same way, the enstrophy-destruction term (second
term on the right-hand side of (3.2) ) involves a non-dimensional parameter G which
can be expressed in the following way:

G =
3
√

15

7
(2ν2〈ωi,jωi,j〉 − C2(Re)

ε2

q2/2
)
q2/2

ε2
1

Re1/2
.

The classic ε-equation is then recovered as

ε,t =

[
7

3
√

15
(S − G)Re1/2 − C2

]
ε2

q2/2
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Figure 1. Energy transfer T/(η2v) for: (a) , EDQNM; and , 1283 DNS.
(b) , EDQNM; and , 2563 DNS.

where S is the only term which accounts for nonlinear dynamics directly affected by
rotation (the contribution of triple contributions or spectral transfer, according to
(3.3) and (3.4)), whereas G and C2 reflect the viscous destruction term. As pointed out
by Mansour et al. (1991b), G is the coefficient of the leading term in the expansion,
in terms of Re, of the destruction term. The production–destruction equilibrium in
isotropic (non-rotating) turbulence can be written very simply using S and G, since it
amounts to S = G. A simple dynamic model for S and G, with a specified function
C2(Re) was proposed by Mansour et al. (1991b), resulting in very good agreement
with 1283 and 2563 DNS for large range of Rossby and Reynolds numbers. In what
follows we shall compare the DNS results with EDQNM models (whose results were
not quoted in the short paper by Mansour et al. 1991b); it is worth noticing that if a
good model for T in (3.1), leading to a good model for S in (3.4) is provided, there
is no need to provide a model for G, since the Lin equation is solved. Hence only
DNS–EDQNM intercomparisons for S will be given in the following.

The non-rotating precomputations by Mansour et al. (1991a, b) were started with
a classic narrow-band spectrum and run up to a time t0 to build triple correlations
(Mansour & Wray 1994). These precomputations were crucial for the study, as dis-
cussed in §2. They were needed to obtain a reliable power-law decay for the turbulent
kinetic energy, and not only a plateau for the skewness S; this condition is more
stringent (larger t0) than in previous classic DNS, so that smaller Reynolds numbers
are reached at the time t = 0 when the rotation is suddenly added. Nevertheless, only
the long time precomputation ensures that the initial data are of physical relevance
when the rotation is started. This precomputation also provided an opportunity to
compare DNS and basic EDQNM in a quantitative way. For instance, the transfer
term T (k, 0) directly computed from the DNS data is compared to the one derived
from the DNS energy spectrum E(k, 0) through the EDQNM closure relation of type
(2.19), for 1283 and 2563 in figures 1(a) and 1(b), respectively. The agreement is
impressive, especially for the case with highest resolution (2563); the results illustrate
the advantage of the logarithmic step used in EDQNM for giving a better resolu-
tion of largest scales (smallest k), and justify keeping the constant A (see (2.18)),
initially calculated at very high Reynolds number, unchanged for a very large range
of Reynolds numbers.

The histories of the skewness are plotted in figure 2(a) for several rotation rates, and
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Figure 2. Evolution of skewness for the different indicated Rossby numbers given by (a) 1283

DNS (symbols) and EDQNM (lines); (b) EDQNM2 (symbols) and EDQNM (lines).

the results from DNS are compared to the ones from the EDQNM model corrected
for rotation started with the same energy spectrum E(k, 0) (3.1), (3.3), and (2.18).
These results show strong damping of the skewness, which reflects the drop of triple
correlations in the presence of rotation, and, again, the excellent agreement between
DNS and EDQNM. The results of EDQNM2 and EDQNM are also compared
in figure 2(b). These results confirm that a rough EDQNM model is sufficient for
predicting the complex scrambling effects of rotation on triple correlations, when
looking at spherically averaged quantities. However, only a model which takes into
account the anisotropic effects of rotation in the nonlinear interactions (spectral
transfer) can predict the anisotropic features, as discussed in the following section.

In order to collapse all of the results concerning the histories of the skewness,
Mansour et al. (1991b) proposed plotting S versus the instantaneous Rossby number;
a first attempt using the macro-Rossby RoL gave a good collapse for the plots at
fixed initial Reynolds number (either 1283 or 2563) but a better overall collapse of all
the data was found using a quantity proportional to the micro-Rossby number, or

Roω = ω′/(2Ω) = RoL(ReL)1/2 =
√

15Roλ
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Figure 3. Variation of the skewness with respect to the inverse of the Rossby number Roω . Curves
show the EDQNM results, and symbols indicate (1283 and 2563) DNS computations; , the
analytical profile of (3.5); other lines represent particular EDQNM runs with initial low Rossby
number.

where RoL and ReL were evaluated by ε/(2Ω(q2/2)) and (q2/2)2/(νε) respectively. As
shown in figure 3, all the runs for S histories start with the same initial value (close
to 0.49), but eventually S tends to collapse on an unique curve S = Se(Roω). Guided
by the good predictions of the basic EDQNM model, (2.18) suggests that the effects
of rotation be of the form [1 + (2Ω)2/〈ω2〉<k]−1/2 through the following equation:

Se(Roω) =
0.49

[1 + 2/(Roω)2]1/2
(3.5)

which is shown to fit very well the DNS and EDQNM data (see also figure 3). The
above equation is consistent with a damping of nonlinear terms at a micro-Rossby
number smaller than 1, so that a pure viscous decay (T = 0 in (3.1)) is recovered
at small micro-Rossby number, as obtained by Speziale et al. (1987). The value
0.49 recovered at infinite Rossby number (no rotation) for the skewness is a classical
result of the isotropic EDQNM model, and is in agreement with the DNS data.
Corrections in terms of the Rossby number were proposed in the left-hand side of the
dissipation rate equation (3.2), of the kind Cε2(Ro)(q2/2)/ε, by Bardina et al. (1984)
and Aupoix (1984) (see also Cambon, Jacquin & Lubrano 1992a), but these models
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did not account for the separate and dynamically significant role of the production
and destruction of the dissipation rate.

4. Spectral approach to anisotropic features: dimensionality and
polarization

4.1. Background: experimental evidence

It is clear that nonlinear interactions modified by rotation trigger the onset of
anisotropy. This nonlinearity makes the prediction of the onset of anisotropy difficult.
Both the way in which the anisotropy is reflected by the usual indicators, and the first
phase of reduction in dimensionality require a detailed two-point (or spectral with
angular dependence) approach. A first insight to this problem was given by the DNS
calculations of Bardina et al. (1985), who showed that anisotropy is primarily reflected
by the integral lengthscales whereas the Reynolds stress tensor remained quasi-
spherical, but the underlying anisotropic spectral shape and the relevant parameter
regime were hardly discussed. The theoretical and experimental approach by Jacquin
et al. (1989, 1990), and Cambon & Jacquin (1989), using mainly a non-isotropic
spectral description, went further into characterizing the key anisotropy indicators
and the parameter ranges. The main result of the experimental approach is that the
most relevant anisotropy indicators involve the integral lengthscales with longitudinal
(along the rotation axis) separation (index 3) but relative to either transverse L3

11 or
longitudinal L3

33 velocity components, where

Lkij =

∫ ∞
0

〈ui(x)uj(x+ rn(k))〉dr/〈ui(x)uj(x)〉 (4.1)

with n(k) the unit vector along the direction axis xk . They also showed that the
anisotropy is triggered as soon as a macro-Rossby number becomes smaller than 1,
provided the Reynolds number is high enough. More accurately, the quantities chosen
for an optimal collapse of experimental data were the following.

(i) A longitudinal and a transverse macro-Rossby number

Rov =
〈u2

3〉1/2

2ΩL3
33

, Roh =
〈u2

1〉1/2

4ΩL3
11

(4.2)

(these are equal in isotropic turbulence). The subscripts v (for longitudinal) and h
(for transverse) refer to vertical (the axis of rotation) and horizontal directions, in
agreement with the notation used in most numerical and theoretical papers, even
if the ‘longitudinal’ direction actually is the streamwise one in the experiment. For
convenience (improving the collapse of experimental plots), each quantity can be
plotted versus a ‘fictitious’ longitudinal Rossby number R∗o = (u′/L)|Ω=0/(2Ω) which
is the ratio u′/L of the non-rotating case divided by twice the actual rotation rate.
The length and velocity scales u′ and L, from the non-rotating case, that are used in
this definition are time-dependent quantities. Thanks to this procedure, the transition
point is rescaled to a single value for all data, independently of the different initial
conditions and different rotation rates.

(ii) A longitudinal and a transverse ‘two-dimensional energy component’

Ev
v = E3

33 = 〈u2
3〉L3

33 , Ev
h = 2E3

11 = 2〈u2
1〉L3

11 (4.3)

(equal in isotropic turbulence, see also Cambon 1990 for a discussion of the generalized
‘two-dimensional energy components’ El

ij = 〈uiuj〉Llij).
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non-dimensional (i.e. divided by ΩUM2) energy E⊥ = Ev
h . (Experiment by Jacquin.)

The experimental results, predicted by the EDQNM2 results, showed that, at
sufficiently high Reynolds number, Rov is unaffected by rotation and decays as t−1,
like the fictitious Rossby number (or u′/L without rotation), whereas Roh exhibits a
sudden change of slope for a fictitious or (actually the longitudinal) macro-Rossby
number close to 1, and decays as t−1.5 for smaller values of the fictitious Rossby
number (see figure 4 from Jacquin et al. 1989, 1990). The collapse is not so good
for all of the data, but is, however, impressive for the two ‘two-dimensional energy
components’ divided by the rotation rate and plotted in terms of the fictitious Rossby
number. As shown in figure 5, Ev

h suddenly separates from Ev
v at the fictitious (or

actual longitudinal) Rossby number close to 1 and is quasi-constant at smaller values.
(Note that the scaling of the two-dimensional energy components in figure 5 in terms
of ΩUM2, with U the streamwise mean velocity and M the mesh size, was suggested
by the good collapse of Ev

h/Ω and Eh
h/Ω.) For smaller initial Reynolds numbers, such
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as those reached in the Wigeland & Nagib (1978) experiment, this first transition,
where anisotropy is triggered, can be delayed by viscous effects and occurred at
macro-Rossby numbers smaller than 1. In Jacquin et al. (1990), the first transition is
shown to occur at a macro-Rossby number smaller than unity if the Ekman number
is higher than one at which the Reynolds number history curve crosses over the limit
Rov = 1.

The evidence of a second transition which corresponds to the lower limit of the
intermediate range of Rossby numbers (the range where nonlinear non-isotropic
effects of rotation are statistically significant) comes also from experimental data (see
again figure 5 and Jacquin et al. 1989, where a change in Ev

h is also exhibited near
Roω ∼ 1) but especially from EDQNM and DNS where high rotation rates are more
easily reached. It is suggested that when a micro-Rossby number Roλ is smaller than
1, all the nonlinear effects become statistically insignificant, similar to the effects on
the skewness in (3.5), so that the anisotropy can only evolve according to the so-called
RDT solution and cannot be created. Even if resonant triads are selected at very low
Rossby number, and tend to reduce the dimensionality, the measure of their manifold
is statistically too weak to significantly influence the whole spectral transfer, which is
more affected by the scrambling effect of non-resonant triads.

Hence, there exists a large body of evidence to support the simple scheme of an
intermediate range of Rossby numbers limited by a macro-Rossby number (based on
longitudinal quantities) close to 1 for the upper bound, and a micro-Rossby close to
1 for the lower bound. This range involves the Reynolds number through the ratio
L/λ, and the upper limit can also be diminished at low Reynolds number, depending
on the Ekman number.

In addition to the anisotropy indicators that involve the integral lengthscales, and
especially the two-dimensional energy components, one can look at three-dimensional
energy components: the anisotropy reflected by the Reynolds stress tensor and
created at intermediate Rossby numbers was found weak but significant, especially in
EDQNM2 results or in LES results at high Reynolds number.

4.2. Exact relationship (without any closure)

In agreement with equation (2.15), the real part of the second-order spectral tensor
can be split into three parts:

Re[Ûij] =
E

4πk2
Pij +

(
e− E

4πk2

)
Pij + Re[ZNiNj]. (4.4)

Only the first term on the right-hand side characterizes a pure three-dimensional
isotropic state, so that the two following terms are both anisotropic parts: the
first involves the departure of e from a spherical distribution and thus characterizes
a directional anisotropy, the second is trace free (NiNi = 0) and characterizes a
polarization anisotropy (or tensorial anisotropy at a given wavevector). Any second-
order correlation tensor in physical space can be found as the sum of three of
these contributions. Accordingly a contribution from directional (superscript e) and
polarization anisotropy (superscript z) is readily derived.

It is now interesting to distinguish the correlations in physical space which involve
a three-dimensional integral from the ones which involve a two-dimensional integral.

Using (4.4), the Reynolds stress tensor is given by

〈uiuj〉 = q2 δij

3
+

∫ (
e− E

4πk2

)
Pijd

3k +

∫
Re[ZNiNj]d

3k (4.5)
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so that its deviatoric part bij = 〈uiuj〉/q2 − δij/3 can be split as bij = beij + bzij , where

q2beij =

∫ (
e− E

4πk2

)
Pij d3k (4.6)

also characterizes the anisotropy of the dimensionality structure tensor (Kida & Hunt
1989; Reynolds & Kassinos 1994):

Dij = 2

∫
kikj

k2
e d3k = q2

(
δij

3
− 2beij

)
. (4.7)

The vorticity correlations can be derived from equations (2.15) and (4.5) by only
changing e into k2e and Z into −k2Z:

〈ωiωj〉 =

∫
k2ePij − k2Re

[
ZNiNj

]
d3k.

The two-dimensional energy components (Cambon 1990) El
ij = 〈uiuj〉Llij are given

by a two-dimensional integral of eq. (2.15) for the spectral tensor in the wave-plane
kl = 0; the most interesting ones correspond to the plane k3 = 0 where the ‘rapid’
effect of rotation is not present, or

Ev
v = E3

33 = 〈u2
3〉L3

33 = π

∫
(e+ Re[Z])|k3=0 d2k, (4.8)

Ev
h = E3

11 + E3
22 = 〈u2

1〉L3
11 + 〈u2

2〉L3
22 = π

∫
(e−Re[Z])|k3=0 d2k. (4.9)

Other relationships for integral lengthscales with transverse separation and simplified
equations for axisymmetric turbulence are available in Cambon & Jacquin (1989). It
is worth noticing that neither the helicity spectrum nor the imaginary part of Z are
involved in the above definitions of single-point correlations. In fact, helicity cannot
be created in homogeneous turbulence with a centre of symmetry, and is relevant only
in inhomogeneous flows, especially with strong spatial intermittency. On the other
hand, the imaginary part of Z is present in the ‘rapid’ part (linear contribution) of the
spectrum of the pressure–strain-rate tensor, in the presence of any rotational mean
flow, and thus plays a role in the dynamics – especially the rapid effects – of some
of the single-point correlations quoted above. In any case, Z must be interpreted as
a complex term; in addition to its interpretation in terms of a correlation coefficient
between the two helical mode intensities in (2.17), the modulus |Z | is an invariant of
the spectral tensor of double velocity – or vorticity – correlations, and its argument
gives the orientation of the principal axis of the symmetrized spectral tensor at fixed
k, with respect to a given direction. Only in the waveplane k3 = 0, is Z real, and e+Z
and e − Z characterize spectral contributions from vertical and horizontal velocity
components respectively, in agreement with (4.8) and (4.9).

Now, it is possible to predict the impact of the dynamics of e and Z (linear, then
nonlinear) on the various correlations in physical space, using the exact relationships
(4.5) to (4.9). The key equations for the prediction of the dynamics are the system
(2.16) for e, Z , h. In the absence of nonlinear interactions, a regime expected for the
micro-Rossby number smaller than 1, it is found that

e(k, t) = e(k, 0) exp(−2νk2t),

h(k, t) = h(k, 0) exp(−2νk2t),

Z(k, t) = Z(k, 0) exp(−2νk2t+ 4iΩtk3/k).

 (4.10)
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These linear solutions can be used for calculating the history of any second-order
statistical quantity in accordance with the so-called RDT (Cambon & Jacquin 1989;
Mansour et al. 1991c). Only Z , however, is actually affected by a ‘rapid’ timescale
Ωt, and only for k3 6= 0. In addition, there is no distortion by the mean, so that
the term RDT (rapid distortion theory) is not very relevant and will be replaced by
linear approach in the following. Accordingly, if the Rossby number is small enough
to separate a rapid and a slow timescale, the initial values in the above equations can
be replaced by functions of the slow timescale, whose history is determined by the
spectral transfer terms Te, T h, T z in the system of equations (2.16).

The quantities which involve an integration along k3 (or cos θk), such as the
Reynolds stress tensor, the vorticity correlations tensor, or two-dimensional energy
components in a plane other than k3 = 0, must rapidly evolve until the contribution
of the polarization anisotropy term Z is damped, whereas the part that involve e –
thus the directional anisotropy e(k) − E(k)/(4πk2) – will be conserved; the damping
effect is due to the angular averaging of the phase term exp(4iΩtk3/k) in the linear
solution (4.10). This behaviour is valid if the initial data are not too close to pure two-
dimensional turbulence (as discussed below) and yield the rapid change of anisotropy
reflected by the Reynolds stress tensor under rotation, as shown by several authors
(Itsweire et al. 1979; Cambon & Jacquin 1989; Mansour et al. 1991c). Accordingly,
any change in these quantities which involve the directional dependence of e is along
the slow timescale; for instance the equality bij = beij corresponds to a rapid damping
of bzij , whereas only the change in beij is along the slow timescale and reflects the
transition towards the slow manifold (the two-dimensional state).

The quantities which involve integration over the wave-plane k3 = 0 cannot exhibit
any ‘rapid’ effect of rotation, so that the contributions from both e and Z deal with
the slow timescale. The last step in the interpretation of anisotropic trends is to
distinguish three cases:

(i) the pure three-dimensional three-component isotropic state (isotropy or 3D-3C)

e =
E(k)

4πk2
, Z = h = 0 (4.11)

(yielding bij = beij = bzij = 0),
(ii) the pure two-dimensional two-component state (2D-2C)

e =
E(k)

2πk
δ(k3) , Z = −E(k)

2πk
δ(k3) , h = 0 (4.12)

(yielding b33 = −1/3, be33 = 1/6, bz33 = −1/2).
(iii) the pure two-dimensional three-component state (2D-3C)

e =
E(k)

2πk
δ(k3) , Z = 0, h = 0 (4.13)

(yielding b33 = 1/6, be33 = 1/6, bz33 = 0).
In each case, as in intermediate anisotropic cases created by rotation, the components
b
e,z
33 characterize the complete tensor in agreement with axisymmetry around Ωi = Ωδi3,

or be,zij = −3(δij/3− δi3δj3)be,z33/2.

4.3. Nonlinear effects using EDQNM2 and LES results

Starting with a pure 3D-3C isotropic state, it is clear that only the nonlinear effects
reflected by (Te, T z) are capable of breaking the isotropy in the presence of rotation
at intermediate Rossby numbers in order to create an axisymmetric state. The specific
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Figure 6. Isolines of kinetic energy for LES computations (a) at Ω = 0 at time t/τ = 427, (b)
EDQNM2 with Ω = 0; (c) LES with Ω = 1 at t/τ = 575; and (d) EDQNM2 calculation with
Ω = 1 at time t/τ = 148.

development of the nonlinear terms Te and Tz , and their impact on single-point
quantities, will be shown using the CMS databases and the EDQNM2 model run at
the same conditions: for two chosen values of the rotation rate (Ω = 0.5 and Ω = 1
dimensionalized with initial parameters box length L = 2π and total (twice kinetic)
energy q2 = 1) and large initial Rossby numbers. The LES computations by CMS
were run in a rectangular periodic box (of size 128× 128× 512) to allow the vertical
lengthscales to increase without affecting the periodic boundary condition assumption.
The initial isotropic conditions were set at sufficiently large initial Rossby numbers
to allow the triple correlations to develop before the linear role of rotation becomes
important. In order to reach high Reynolds numbers, a spectral subgrid-scale model
is used and molecular viscosity is omitted. The same SGS model is used in EDQNM2
equations, so that it is possible to compare the nonlinear interactions simulated from
resolved scales in LES and their EDQNM modelling (through Te and Tz in 2.16)
with optimal accuracy.

The depiction of the energy density spectrum as a function of the modulus of the
wavenumber is meaningful only when the energy distribution is isotropic. For the
rotating case we expect the distribution of the energy density to be axisymmetric with
respect to the k3-axis and a function of k3/k = cos θk . A natural coordinate system
in this case is k = (k2

1 + k2
2 + k2

3)1/2 and k3/k. An isotropic spectral distribution of the
kinetic energy, will result in isolines parallel to the k-axis, with no dependence on
θk , as shown in figure 6(a) for LES and figure 6(b) for EDQNM. In the latter case,
the isolines are straight, since the isotropy is exactly described by this model. As the
flow evolves, the angular-dependent nonlinear transfer accumulates energy towards
the two-dimensional manifold (see §2.4), characterized by a wavevector orthogonal
to the rotation axis, or equivalently θk = π/2 (see figures 6c and 6d). There again,
the strong similarity between EDQNM2 and LES plots appears even for this kind
of representation which explicitly shows the detailed directional anisotropy. The
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Figure 7. Variation of the anisotropy be33 and bz33 with the Rossby number RoL, for Ω = 1 and
Ω = 0.5, as given by: , EDQNM2; , LES, computations.

highly concentrated energy region close to the equatorial plane (lower bound of the
plot) would be roughly of the shape of a torus if one plotted its surface in the full
three-dimensional spectral space. We can also notice that the discretization in LES
for wavevectors close to cos θk = 1 is limited.

This concentration of spectral energy towards the wave-plane k3 = 0 – the slow
manifold – by Te is a pure reduction of dimensionality (relative decrease of ∂/∂x3

in physical space) and affects only the directional dependence of e. Considered
alone, this effect on dimensionality would create a ratio 〈u2

h〉/〈u2
v〉 smaller than 1 (or

equivalently b33 > 0), and would magnify the integral lengthscales with longitudinal
separation, so that E3

αα > E1
αα (no summation on α) for any velocity components; as an

extremal state, the pure 2D-3C state (4.13) would give 〈u2
h〉/〈u2

v〉 = 1/2 (or b33 = 1/6)
and E3

ii = ∞. Therefore, regarding one-point quantities, the directional dependence is
clearly seen on the e part of b33 (figure 7). The development of be33 as a function of
the Rossby number shows a sudden increase in time when the critical value of Ro is
reached, whereas the Z part bz33 does not show a significant departure from its initial
zero value. Note that at the smallest Rossby number, a sudden rise of negative bz33

occurs; this effect, which is extensively discussed in CMS, is associated with a second
transition (Roω ∼ 1). This second transition is outside the scope of this paper.

Another anisotropic effect involves the ‘polarization anisotropy transfer’ Tz which,
in addition to the angular dependence of energy, displays a polarization of the
spectral energy at fixed k in terms of different contributions from vertical 〈û∗3û3〉 and
horizontal 〈û∗1û1〉 + 〈û∗2û2〉 velocity components. This effect cannot be predicted by
Waleffe’s analysis of §2, and is only obtained with EDQNM2 and high-Reynolds-
number LES (Squires et al. 1994; CMS). This effect is detected in physical space
by the ‘de-coupling’ between L3

33 and L3
11 (see figure 8 from CMS data), or more

relevantly between Ev
h and Ev

v (4.8) and (4.9), as in the experiment by Jacquin et al.
(1990). Equations (2.16), (4.8) and (4.9) clearly show that this effect on componentality
is due to a rise of Z (only driven by Tz) in the wave-plane k3 = 0, so that a possible
2D-3C state would evolve towards a 2D-2C state, where Ev

h = ∞, Ev
v = 0. It must

be pointed out, however, that this tendency, 2D-3C → 2D-2C, only concerns the
two-dimensional energy components, and not the Reynolds stress tensor in which
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the dominance of the vertical component prevails. This transition of state may be
well indicated by the range of the Rossby number in such a decreasing turbulence:
a value around unity is the starting point for the anisotropic behaviour of nonlinear
dynamics of the flow, as indicated by the experimental data in figures 5(b) and 4, or
in figure 9 for EDQNM2 results. It is interesting to see that in his experiments, in
order to collapse all the experimental points onto one curve, Jacquin was led to define
the energy components E⊥ and E‖ as non-dimensionalized by the mean velocity of
the flow and the grid mesh size, but also by the rotation rate Ω (figure 5). Doing
so for 〈u2

3〉L3
33 and 〈u2

1〉L3
11 + 〈u2

2〉L3
22, given by LES and EDQNM2, collects all the

results under one curve for each component, and one easily sees that the transition
(separation point of the two energy-component curves) appears at the same time for
both (see figure 10). However, the LES predicts a more important tendency than the
EDQNM2 model (figure 10b), for which the rate of departure of the two components
is less. But the increase of 〈u2

1〉L3
11 + 〈u2

2〉L3
22 shown by the LES evolution does not

appear in the experimental data of figure 5.
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5. Conclusion
Organized around the main theme of the importance of nonlinear effects on the

dynamics of turbulence subjected to solid-body rotation, the contents of this paper
are two-fold: first we investigated the extent of applicability of weakly nonlinear
theories for wave turbulence, as well as their relationships to high-Reynolds-number
modelling of turbulence; second, we have shown that the effects of rotation on one-
point and two-point statistics are through nonlinear interactions. It is shown that
a spectral description (or two-point modelling) is needed to capture the effects of
rotation. Separating the linear effects of rotation on turbulence from the nonlinear
ones leads to a detailed investigation of nonlinear energy transfers. We have shown
that in order to account for the effects of rotation on a one-point closure, the effects of
rotation on the triple correlations has to be taken into account through the skewness.
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The skewness is shown to be strongly damped by the rotation in both EDQNM2
and DNS results. The simpler EDQNM model corrected for rotation is shown to
be able to capture the effects of rotation on the skewness. The definition of a new
micro-Rossby number Roω proves useful regarding the collapse of all the skewnesses
on the same curve, with a given analytical expression Se(Roω). The critical value of 1
for Roω is the limit for recovering a regime of pure viscous decay.

We then reviewed the anisotropic effects of nonlinearity in rotating flows, namely
a directional anisotropy that tends to accumulate energy in the spectral direction
orthogonal to the external rotation vector (the two-dimensional domain or slow
manifold), a process that can be partly explained by an instability analysis (Waleffe),
and for which evidence has been found in EDQNM2 distribution of the energy
spectrum e (Cambon & Jacquin 1989), in experimental data (Jacquin et al. 1989,
1990), in LES computations (CMS) and in DNS computations (Mansour et al.
1991a, b) but less clearly.

This spectral accumulation of energy towards the slow manifold, when the macro-
Rossby number reaches 1, is the beginning of a transition from a pure three-
dimensional state to a two-dimensional one: the directional anisotropy is consistent
with a lessening of the dimensionality in rotating flows. We have shown that the
spectral decomposition into energy e and polarization anisotropy Z spectra retains
the full anisotropic information, which, by selected integrations in spectral space,
gives the directional anisotropy indicator in physical space, namely the deviatoric
part bij of the Reynolds stress tensor. The latter, when decomposed into the two
contributions beij and bzij also shows the transition, through a sudden increase in beij .

The two transitions cannot be explained by separating ‘rapid’ linear terms, with a
scaling Ωt, from ‘slow’ nonlinear terms, suggested by the analysis of wave turbulence
in §2. This separation is not relevant in the intermediate range of Rossby numbers.
Indeed, the terms that reflect nonlinear interactions can also involve the ‘rapid’
non-dimensional time Ωt (see for example the scaling laws in Squires et al. 1994,
confirmed by LES results, and consistent with an energy transfer proportional to the
short timescale 1/Ω). As mentioned before, a possible interpretation of the scaling of
the nonlinear energy transfer in terms of 1/Ω is the dominant role of non-resonant
triads, through a phase scrambling of interacting inertial waves, with respect to
resonant triads. In other words, resonant triads are useful for a qualitative analysis
of weak nonlinear trends towards two-dimensionalisation, but are of no relevance
from a statistical point of view, in strong turbulence, since they then do not clearly
emerge. The inhibition of the energy cascade, which can be predicted by simple
isotropic models in §3 (from EDQNM to k–ε), is consistent with such a weighting in
1/Ω of the averaged energy transfer, and this behaviour can be found without any
significant trend towards bidimensionalization occurring. For the flow we considered,
the only quantity which could be directly related to the slow time behaviour of
the resonant triads is Ev

h = 〈u2
1〉L3

11 + 〈u2
2〉L3

22, which involves the horizontal velocity
components in the horizontal waveplane (the slow manifold). The strong increase
of this quantity in LES (CMS), whose behaviour seems to be decoupled from all
other statistical quantities, could reveal the emergence of an inverse energy cascade,
characteristic of a pure two-dimensional dynamics (k3 = p3 = q3 = 0). The problem
is not easy, however, since even the nonlinear dynamics of quantities that involve
the slow manifold (k3 = 0) depend on other wavevector directions through triadic
integrals (with p3 = −q3 6= 0). The analysis of Waleffe suggests that the pure two-
dimensional manifold is decoupled, at the lowest order of a formal Rossby number,
but the numerical approaches at finite Rossby number are not conclusive, and different
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numerical and theoretical problems can interfere: accounting for the zero- or low-
dimension manifolds in discretized wavespace is not obvious, and a Rossby number
has no local meaning in pure two-dimensional equations (k3 = p3 = q3 = 0), since
rotation terms vanish in (2.6) and (2.10).

By examining the evolution of the anisotropic indicators in physical space, using
both CMS LES databases and EDQNM2, we have confirmed (CMS) the existence
of an intermediate range of Rossby numbers. The upper bound is characterized by
a macro-Rossby number RoL = u′/(2ΩL3

33) whose value close to 1 is linked to a first
transition towards two-dimensionalization. Starting from an initially 3D isotropic
turbulence decaying in the presence of rotation (with obviously RoL > 1 initially and
given a large Reynolds number) the anisotropy is suddenly triggered at RoL = 1. Note
that most of the DNS rotating cases by Mansour et al. (1991a, b), even for 2563, cor-
responded to histories that started inside the intermediate range of Rossby numbers.
For the few cases with initially (end of the precomputation) RoL > 1, the transition
was delayed and the resulting anisotropy was small. On the other hand, a clear first
transition is exhibited using the LES databases of CMS. The first explicit mention of
the second transition was given by Jacquin et al. (1989), on the grounds of an analogy
with the role of the Osmidov lengthscale in stably stratified turbulence. The exact
value of the corresponding lower bound of the intermediate range of Rossby number
characterizes a complete damping of nonlinear interactions for Roλ � 1 – in contra-
diction to a well-known interpretation of the Taylor–Proudman theorem. A complete
discussion of its relation to the Osmidov scale for both transitions is given by CMS.

Finally, the whole study confirms the relevance of the spectral formalism (e, Z, h) for
characterization of complex and detailed anisotropic features. The development of the
anisotropy is a prelude to a trend towards two-dimensionalization. We have pointed
out that the polarization anisotropy Z is a component of the anisotropy that is
poorly reflected in the representation of anisotropy in ‘classic’ one-point correlations.
Quantities such as 〈u2

3〉L3
33 or 〈u2

1〉L3
11 + 〈u2

2〉L3
22 are influenced by the Z-term.

C.C. and F.S.G. would like to acknowledge partial support of the Center for
Turbulence Research during the course of this study. Many discussions with Professors
K. Squires and J. Chasnov are also gratefully acknowledged.

Appendix. The EDQNM2 model
The EDQNM2 model was introduced to take into account additional linear op-

erators in the governing equations for velocity or temperature fields. The general –
semi-symbolic – closure relation for the spectral tensor of triple correlations at two
points reads

〈û.(k, t)û.(p, t)û.(q, t)〉 =

∫ t

0

∫
k+p+q=0

GED.. (k, t, t′)M...(k, p, q)

×[GED.. (p, t, t′)Û..(p, t)][G
ED
.. (q, t, t′)Û..(q, t)] d3p dt′ + ... (A 1)

where GED(k, t, t′) is similar to the Kraichnan response tensor, and chosen as the
product of the tensor G that generates the exact linear solution (the zero-order
response tensor) and an ad hoc eddy-damping term. Û is the second-order spectral
tensor at time t, andM is the ‘influence matrix’ that characterizes the basic nonlinearity
in spectral space. For the sake of brevity, the subscripts are omitted in the above
symbolic equation, and the dots at the end stand for two similar terms obtained by
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circular permutation of the vectors of the triad. Finally a transient term linked with
a possible initial value (time t = 0) of triple correlations is omitted too.

The above equation can be written in any orthonormal frame of reference (for
k, p, q ) and especially in the eigenframe in which G is diagonal. Accordingly, the
time integral of the product of the three response tensors yields the term θεε

′ε′′

kpq in
equation (2.21) as the generalized triadic characteristic time, that is the weighting
factor of any quasi-normal expansions in generalized transfer terms. In addition,
the contributions from the spectral tensor related to k, p, q amount to the sets (e, Z),
(e′, Z ′), (e′′, Z ′′) in the eigenframe, respectively. The last main change of frame, which
allows a separation between moduli and orientation, and is also a key in the Waleffe
analysis reported in §2, consists of rotating the three eigenframes related to k, p, q by
angles λ, λ′, λ′′ in order to refer them to a polar axis linked to the plane of the triad,
rather than a polar axis with a fixed (vertical) direction. The three angles give the
angles between the plane of the triad and the three vectors k, p, q, respectively. Thus,
the spectral tensor contributions become

e= e(k, t), X = Z(εk, t)e2iελ,

e′ = e(p, t), X ′ = Z(ε′p, t)e2iε′λ′ ,

e′′ = e(q, t), X ′′ = Z(ε′′q, t)e2iε′′λ′′ ,

 (A 2)

and the influence matrix (equation (2.7)) becomes

Mεε′ε′′ = mεε′ε′′(k, p, q)ei(ελ+ε′λ′+ε′′λ′′)

so that the orientation is only involved in the three angles (λ, λ′, λ′′), in θεε
′ε′′

kpq (for the
rotating case) and in the basic terms (e, Z) (if anisotropy develops) but not in most
of the geometrical coefficients, given below, that only depend on (k, p, q). Finally it is
found that

Te =
1

23

∑
εε′ε′′

∫
2p

k
C2
kpqθ

εε′ε′′

kpq

[
A1(εk, ε

′p, ε′′q)e′′(e− e′)

+A2(εk, ε
′p, ε′′q)eX ′′ + A3(εk, ε

′p, ε′′q)e′′X

−A5(εk, ε
′p, ε′′q)e′X ′′ + A4(εk, ε

′p, ε′′q)X ′′(X −X ′)
]

d3p, (A 3)

Tz =
1

23

∑
ε′ε′′

|ε=1

∫
2p

k
C2
kpqe

−2iλθεε
′ε′′

kpq

[
A3(k,−ε′p,−ε′′q)e′′(e′ − e)

+A4(k,−ε′p,−ε′′q)eX ′′ + A1(k,−ε′p,−ε′′q)e′′X

−A5(k,−ε′p,−ε′′q)e′′X ′ + A2(k,−ε′p,−ε′′q)X ′′(X −X ′)
]

d3p (A 4)

where e, X, e′, X ′, e′′, X ′′ are given in (A 2) and the geometric coefficients are

Ckpq =
sin(p, q)

k
=

sin(q, k)

p
=

sin(k, p)

q
,

A1(k, p, q) = −(p− q)(k + p+ q)(k − q)(k + p+ q),

A2(k, p, q) = −(p− q)(k + p+ q)(k + q)(k + p− q),

A3(k, p, q) = (p− q)(k + p+ q)(k + q)(−k + p+ q),

A4(k, p, q) = (p− q)(k + p+ q)((k − q)(k − p+ q),

A5(k, p, q) = −(p− q)(k + p+ q)(p+ q)(k + p− q).


(A 5)
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The coefficients linked to ‘output terms’ a(p, t)b(q, t) may have a different form,
given the symmetry between p and q in the integrals (A 3) and (A 4).

If the rotation is taken out, θεε
′ε′′

kpq reduces to θkpq and the summation on the polarity
signs ε, ε′, ε′′,= +1,−1 yields the following simplified terms:

Te =

∫
θkpq 2kp

[
(e′′ + ReX ′′)

[
(xy + z3)(e′ − e)− z(1− z2)(ReX ′ −ReX)

]
+ ImX ′′(1− z2)(x ImX − y ImX ′)

]
d3p (A 6)

Tz =

∫
θkpq 2kp e−2iλ

[
(e′′ + ReX ′′)

[
(xy + z3)(ReX ′ −X)− z(1− z2)(e′ − e)

+i (y2 − z2) ImX ′] + i ImX ′′(1− z2)(x(e+X)− i y ImX ′)
]]

d3p (A 7)

where the geometric coefficients are instead expressed in terms of the cosines of the
inner angles of the triangle (k, p, q), x = cos(p, q), y = cos(q, k), z = cos(k, p), using
C2
kpqkp = xy + z, C2

kpqq
2 = 1 − z2, for instance. Finally, the triadic integrals in (A 3),

(A 4), (A 6), and (A 7) can be solved using the following change of variables:∫
S(k, p, t) d3p =

∫
∆k

[∫ 2π

0

S ′(k, p, q, λ) dλ

]
pq

k
dp dq

where ∆k is the domain of p and q so that k, p, q are the lengths of the sides of a
triangle. Equations (A 6) and (A 7) characterize the EDQNM1 model, without the
explicit effect of mean gradient or body forces, for any anisotropic configuration
(Benoit 1992).

Classic EDQNM expressions for the isotropic (3D-3C) case (where e=E(k, t)/(4πk2),
Te = T (k, t)/(4πk2), Tz = Z = 0) and for the (2D-2C) case (Pouquet et al. 1975) are
easily recovered from (A 6) and (A 7). Only the first term e′′(e′−e) on the left-hand side
of (A 6), is present in the three-dimensional isotropic case, and the simplified model
in §3.1 is derived from the corresponding expression for T = 4πk2Te by changing
θkpq only, as in (2.17). This yields the integrand SQN = 16π2k2pq(xy + z3)e′′(e′ − e) in
(2.19).

The (2D-3C) model of Cambon & Godeferd (1993) is also derived from (A 6) and
(A 7) in terms of (e−Z)|k3=0 (horizontal velocity contribution in the slow manifold) and
(e+Z)|k3=0 (vertical velocity contribution in the slow manifold), accounting for rotation
effects vanishing in the two-dimensional limit and that

∫
d2p =

∫
∆k

[sin(p, q)]−1dpdq

and e2iλ = e2iλ′ = e2iλ′′ = −1.
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